technische universität dortmund

Faculty of Mechanical Engineering Chair of Materials Test Engineering Prof. Dr.-Ing. Frank Walther

Neue Erkenntnisse zum Versagensverhalten naturfaserverstärkter Kunststoffe mit maßgeschneiderten Testmethoden

R. Helwing, R. Scholz, F. Walther Chair of Materials Test Engineering (WPT), TU Dortmund University

1. Projekt Motivation

Helwing | 07-08/11/23

Stakeholder Workshop

2/22

- 1 Quasistatische Versuche
- 2 Dynamische Mehrstufenversuche
- 3 Schädigungsmechanismen
- 4 Ergebnisse der Mehrstufenversuche

1. Quasistatische Versuche **DIC-Untersuchungen**

Kamerasystem

1. Quasistatische Versuche Schädigungsmechansimus

1. Quasistatische Versuche Schädigungsmechansimus

Dehnungslokalisation in X-Richtung

- Rückgang der Ondulation an lokalen Stellen
- Faser-Matrix-Enthaftung
- Lokale Dickenveränderung der Proben

Versagen an Punkten mit geringen Dehnungen

- Dehnungslokalisation kein Indikator f
 ür Versagen
- Rückgang der Ondulation führt nicht zum finalen Probenversagen

Helwing | 07-08/11/23

1. Quasistatische Versuche **Dehnungslokalisation**

Schädigungsevolution über die Probenlänge variant Legende: Skaliert nach aufgebrachter Dehnung

2. Dynamische Mehrstufenversuche Versuchsstand

Konsequenzen für die Versuche

- Große Proben um Variation der Probenplatten auszugleichen
- Reduktion der Versuchszeiten durch stufenweise anheben der Pr
 üfbelastung

Thermokamera

Probe

Fragestellungen

- Wie kann die lokalen Varianz mit berücksichtigt werden?
- Welche charakteristischen Merkmale sind geeignet?

2. Dynamische Mehrstufenversuche Schädigungskennwerte

- 1 Statische Versuche
- 2 Dynamsische Mehrstufenversuche
- 3 Schädigungsmechanismen
- 4 Ergebnisse der Mehrstufenversuche

3. Schädigungsmechanismen Wirkende Schädigungsmechanismen

- Schädigungsmechanismen analog zum Zugversuch
- Regional Unterschiede im der Schädigungsentwicklung

Wie kann die Schädigungsentwicklung lokalisiert werden?

10000 20000 30000

Cycle []

Helwing | 07-08/11/23

Max. Stress σ_{max}

20

10 +

0

0

Stakeholder Workshop

wpt

3. Schädigungsmechanismen Lokalisierung der Schädigungsmechanismen

3. Schädigungsmechanismen Kritische Schädigungsmechanismen

- Temperaturfeld fungiert als Schädigungsindikator
- Versagen der Faser-Matrix-Anbindung
- Breiter Querschnitt durch Rückbildung der Ondulation

Regionsabhängige Ermüdungseigenschaften und Schädigungsentwicklung

Helwing | 07-08/11/23

Stakeholder Workshop

3. Schädigungsmechanismen Kritische Schädigungsmechanismen

Helwing | 07-08/11/23

Stakeholder Workshop

- Fasern werden durch die Decklagen gedrückt
- Keine Matrixanhaftungen an Fasern

Möglichkeit zur Wasseraufnahme durch freiliegende Fasern

- 1 Statische Versuche
- 2 Dynamsische Mehrstufenversuche
- 3 Schädigungsmechanismen
- 4 Ergebnisse der Mehrstufenversuche

3. Ergebnisse der Mehrstufenversuchen **Feuchtigkeitsaufnahme**

Kontrastmittelaufnahme in thermisch aktiven Bereich

- Röntgenabsorbierendes Wasser-Alkohol-Gemisch zur Bestimmung der Penetrierbarkeit von Flüssigkeiten
- Eindringen in thermisch aktiven Bereich

Feuchtigkeitsaufnahme im geschädigten Bereich wird erhöht

3. Ergebnisse der Mehrstufenversuchen **Steifigkeitsreduktion**

 Hohe Streuung innerhalb der Gruppen

wpl

- Partner 2-Charge auffällig mit sig. geringer Streuung und früher, spröder Bruch
- Köperbindung mit sig.
 höherer Streuung

18/22

3. Ergebnisse der Mehrstufenversuchen Lokale Schädigungscharakteristik

E-Modul basierend auf Extensometer

- Zeigt einen lokalisierten Defekt an
- Lokale Unterschiede über eine hohe Zyklenzahl gering
- Bei Partner 2 hohe Homogenität bis Bruch

Stakeholder Workshop

3. Ergebnisse der Mehrstufenversuchen **Zusammenfassung und Ausblick**

Zusammenfassung

- Hohe Varianz in den Proben
- Lokalisation der Schädigungsschwerpunkte durch Temperaturfeld möglich
- Punkte der Wasseraufnahme durch Rückgang der Ondulation

Ausblick

- Versuche mit Temperatur- und Feuchtigkeitsüberlagerung als Prüfatmosphären
- Analysieren des Bruchverhaltens von Fasermaterial mit Kavitätenpolymerisation
- Statistische Beschreibung des Faserverhaltens

Helwing | 07-08/11/23

Stakeholder Workshop

technische universität dortmund

Danksagung

Bundesministerium für Ernährung und Landwirtschaft

durobast.de

Förderkennzeichen: 2220NR090E

Dauerhafte und ressourcenschonende Composit-Strukturbauteile auf Basis neuartig vorbehandelter und verarbeiteter Bastfasern U technische universität dortmund

QUESTIONS...?

M.Sc. Ramon HelwingPhone: +49 231 755 90158E-Mail: ramon.helwing@tu-dortmund.de

TU Dortmund University Faculty of Mechanical Engineering Chair of Materials Test Engineering (WPT) Prof. Dr.-Ing. Frank Walther Baroper Str. 303 D-44227 Dortmund Germany

Phone:	+49 231 755 8028
Fax:	+49 231 755 8029
Email:	frank.walther@tu-dortmund.de
Web:	www.wpt-info.de

Helwing | 07-08/11/23

Stakeholder Workshop