

Herstellung von naturfaserverstärkten Organoblechen mit rezyklierter PLA-Matrix

M. Salmins, P. Mitschang, T. Neumeyer Durobast Stakeholder Workshop 8.11.2023 Köln

Bastfasern (bspw. Hanf oder Flachs) als natürlicher Rohstoff

- Hanffasern als sekundäre Ressource
- Verringerter Energieaufwand bei der Gewinnung
- Anbau in Europa und speziell Hanf in Deutschland möglich

Bastfasern als Verstärkung in Verbundwerkstoffen

- Gewichtsspezifische Eigenschaften vergleichbar mit Glas
- Gute thermische und akustische Isolation

Ziel der Untersuchungen:

Vollständig bio-basierte Verbunde mit Naturfasern und rPLA-Matrix

Türverkleidung mit Naturfaserverstärkung

www.thefutureiscomposite.com

Untersuchte Materialien

Gewebeart (Leinwand)	Flächen- gewicht	Garnfeinheit	Faser- volumen- gehalt	Hanfgewebe <u>F</u>	lachsgewebe
Durobast Hanfgewebe	465 g/m²	400 tex			
Biotex Flachgewebe	480 g/m²	250 tex (twistless)		50 mm	50 mm
Biotex Flachs-PLA	550 g/m²	250 tex (twistless) Hybridgarn	40 vol-%	Rezyklierte PLA Pulve	<u>s</u> <u>r</u>
Polymer	Dichte	Biegemodul	Biege- festigkeit	50 mm	
rPLA	1.26 g/cm ³	3.44 GPa	103 MPa		

© Leibniz-Institut für Verbundwerkstoffe GmbH

Versuchsaufbau für die Organoblechherstellung

Organoblecheigenschaften

- 3 Gewebelagen
- 10 g rPLA-Pulver
- \rightarrow Ø 100 mm, Dicke 2 mm, Faservolumengehalt 50 %

Untersuchung verschiedener Parameterkombinationen

- Temperaturstufen: 170 °C, 185 °C, 200 °C
- Druckstufen: 0.5 MPa, 1.5 MPa, 2.5 Mpa
- 5 Versuchswiederholungen je Parameterkombination

Aufzeichnung von Prozessdaten

- Untersuchung effektiver Temperatur- und Druckverläufe
- Untersuchung der Stapeldicke während der Imprägnierung

<u>Stapelaufbau</u>

Laborprüfstand

Versuchsaufbau im Presswerkzeug

www.thefutureiscomposite.com

Faserimprägnierung im Heißpressprozess

Faserimprägnierung als mehrstufiger Prozess

- Faser-Matrix-Stapel wird kompaktiert (I+II)
- Makroimprägnierung (III) beginnt mit dem

Aufschmelzen des Polymers

- \rightarrow Verteilung der Schmelze um die Garne
- → Beginn der Makroimprägnierung als
- charakteristischer Punkt im Prozess
- Mikroimprägnierung (IV) verdrängt Luft aus den

Garnzwischenräumen \rightarrow Porenfreier Verbund

Veränderung der Stapeldicke im Heißpressprozess

- Unabhängig der effektiven Temperaturverläufe
- Stark von dem effektiven Prozessdruck abhängig

Erhöhung des Prozessdrucks führt zu

- Niedrigeren Gesamtdicken in jeder Phase (I V)
 - → niedrigerer Porengehalt
- Früherer Beginn der Makroimprägnierung
 - → längere Imprägnierdauer bei gleicher Prozesszeit

Einfluss der Temperatur

Einfluss der Prozessparameter auf die Imprägnierdauer

Einfluss der Parameterkombination

- Erhöhte Temperatur und Heizraten
 - → Höhere Temperatur beim Beginn der Makroimprägnierung
- Erhöhung des Drucks
- → Früherer Beginn der Makroimprägnierung

Effekt des Prozessdrucks auf den Beginn der Makroimprägnierung

Gewichts-%

Polymerverlust in

30%

20%

10%

0%

0 0.5

T↑

1.5

Druck in MPa

Vergleich der Imprägnierqualität nach dem Prozess

- Schmelzflüssiges Polymer muss die äußeren Textillagen f
 ür eine vollst
 ändige Impr
 ägnierung durchdringen
- Materialaufbau ermöglicht die Bewertung der Imprägnierqualität nach der Entnahme aus dem Werkzeug

Einfluss von erhöhten Prozessparametern

- Verringerung der Polymerviskosität (T)
- Verringerung des Luftanteils im Aufbau (p)
- → Erhöhung der Imprägnierqualität
- → Erhöhter Austritt von Polymer aus dem Wer

E O D

www.thefutureiscomposite

Parametereinfluss auf Faservolumengehalt

•

Biegemodul Optimierte Prozessführung Biegemodul in GPa 3 2 170 - 0.5 MPa ■185 - 0.5 MPa 170 - 1.5 MPa

Faservolumenanteil: 37 %

© Leibniz-Institut für Verbundwerkstoffe GmbH

Untersuchung des Einflusses der optimierten Prozessführung

- Prozesstemperatur: 170 °C
- Prozessdruck zwischen 0,5 und 1,5 MPa
- Untersuchung verschiedener Faser- und Polymeranteile

Vergleich der Biegeeigenschaften

- Erhöhung des Biegemoduls bis zu 75 % gegenüber unverstärktem PLA
- Erreichen von Biegefestigkeiten des unverstärktem PLA
- Rezykliertes PLA führt zu einer Verringerung der Festigkeit um bis zu 25 %

Flachs- und Hanfverstärkung

- kann zur Herstellung von rPLA Organoblechen genutzt werden
- kann die Biegemoduln von rPLA Organoblechen verbessern
- konnten keine Erhöhung der Biegefestigkeit erzielen
- Flachs führte zu einer besseren Verstärkung als Hanf
- Anstieg der Biegemoduln nicht proportional (linear) mit FVG
- \rightarrow Vergleich mit weiteren theoretischen Modellen
- Verstärkungseffekt quer zur Faserausrichtung

Libriz Jemeinschaft Jerenschaften des Verlaufs der Eigenschaften

- Faserdurchmesser zeigt eine hohe Varianz
- Faserbündel sind nicht vollständig aufgeschlossen
- Rissausbreitung im Verbund entlang der Faserbündel (ellipsoid mit Durchmessern zwischen Ø 50 200 μm)

- Herstellung von Flachs- und Hanf-rPLA Organoblechen ist möglich
- Zu hohe Prozesstemperaturen können zur Verringerung der

Halbzeugeigenschaften führen (eingeschränktes Prozessfenster)

• Biegemodul kann gegenüber Polymer erhöht werden (nicht

proportional)

- Biegefestigkeit kann nicht gegenüber Polymer erhöht werden
- Unvollständiger Faseraufschluss kann zu einem limitierten Eigenschaftsprofil führen

Thank you for your attention!

& Sylvain Fotouk Fots

Photo: Thorsten

Kontakt: Maximilian.salmins@ivw.uni-kl.de +49 631 2017 340

© IVW

This document is confidential. The information contained is the property of the institute.

This document may only be reproduced or disclosed to other parties with the consent of Leibniz-Institut für Verbundwerkstoffe GmbH. Transmission or disclosure does not constitute any intellectual property rights. The information contained does not constitute an offer.

Composite Aneurysm Clip