

# **PRESS AND JOINING TECHNOLOGIES**

Manufacturing of Natural Fiber Reinforced Organo Sheets

Leibniz-Institut für Verbundwerkstoffe

1200

200 °C

1F-1LA V26 200°C 1,5 M. 31

50 mm

## Salmins, M.; Gortner, F.; Mitschang, P.

## **OBJECTIVES**

### **State of the Art and Challenges**

- Use of natural fiber in non-woven or fiber reinforced injection molding granules
- Limited mechanical properties due to random fiber orientation
- Decrease in fiber properties due to thermal degradation of fiber components

### Investigation of Process Design for Optimized Property Profile

Enabling of impregnation without reduction in fiber properties through thermal damaging or degradation of natural fiber components

### Laboratory Hot Press



#### **Data-based Evaluation of Impregnation Process**



- Use of rPLA powder with temperature compatibility due to low melt temperature
- Investigation on a laboratory scale for efficient investigation of process parameters process pressure ( $p_{max}$ ) and process temperature ( $T_{max}$ )
- Efficient material use during manufacturing: specimen with a diameter of 100 mm and a target thickness of 1.9 mm and fiber volume content of 50 %
- Evaluation of apparent impregnation quality after processing due to stack setup
- Evaluation of the impregnation process based
  - on process data and B-factor model
  - Three-point-bending specimen (80 mm x 15 mm) according to

**DIN EN ISO 14125** 

## RESULTS







**Investigation of Process Influence on Organo Sheet Properties** 





| 100 mm                                    |                 |                               |                              |                 |
|-------------------------------------------|-----------------|-------------------------------|------------------------------|-----------------|
|                                           | (               | <b>300</b>                    | 600 90                       | 0 12            |
|                                           | Time in seconds |                               |                              |                 |
| Stack Setup                               | E               | Evaluation of                 | Impregnation (               | <u>Quality</u>  |
| Hemp fiber                                |                 | 170 °C                        | 185 °C                       | 20              |
| rPLA Impregnation                         | • -             |                               | NF-YLH V33 1852 0,5 MR       |                 |
| Hemp fiber                                | 0.5<br>MPo      | NF-RA V15 170% 0,5 HA         |                              |                 |
| rPLA Impregnation                         | IVIFA           | 3L                            |                              | 50 mi           |
| Hemp fiber                                |                 |                               |                              |                 |
| Preparation of Specimen for Bending Tests | 15              | NF-PLA 435 170°C 45MA<br>3L   |                              |                 |
| Warp direction                            | MPa             |                               | NF-RA V36 175°C 1,5 Ma<br>32 | NF-ILA VZ<br>SL |
| Bending<br>Bending<br>20 mm               | 2.5<br>MPa      | NF-PLA V43 170°C 2,5 MA<br>3L | NF - PLA V39 185°C 2,5 MPA   |                 |

Integration of process design into Durobast value chain (<u>www.durobast.de</u>)

- Processing of locally sourced hemp fiber textiles developed at Institut für Textiltechnik of RWTH Aachen and manufactured at Wagenfelder Spinnereien GmbH and Gustav Gerster GmbH & Co. KG
- Investigation of cavity polymerization potential for reduction of moisture absorption by project partners Fraunhofer LBF
- Life Cycle Analysis based on the whole value chain by project partner nova institute
- Scale-Up into industrial scale on conventional compression molding equipment IVW together with project partner at Coats Group
- Investigation of fatigue behavior of standard textiles and those with cavity polymerization tested by project partners at Chair of Material Testing (WPT) of TU Dortmund University ACKNOWLEDGEMENTS With support from
- The project Durobast is funded by the Federal Ministry of Food and Agriculture on the basis of a decision by the German Bundestag (funding reference: 2220NR090C).

### www.thefutureiscomposite.com

Leibniz-Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Straße 58, 67663 Kaiserslautern, Germany







by decision of the German Bundestag